Capital One

Navigate firm data through the following pages:

Analyst Listing Primary Input Data
Derived Input Data Valuation Model Outcomes

Analyst Listing

The following analysts provide coverage for the subject firm as of May 2016:

Guggenheim Securities Tony Butler
Credit Suisse Vamil Divan
Wells Fargo Securities Andrew M. Casey
Oppenheimer Ben Chittenden
Stifel Nicolaus Christopher C. Brendler
Sandler O’Neill & Partners Christopher R. Donat
Drexel Hamilton David Hilder
Evercore ISI David Raso
Longbow Research Eli Lustgarten
BMO Capital Markets James Fotheringham
RBC Capital Markets Jason Arnold
BMO Capital Markets Joel Tiss
Jefferies John Hecht
Evercore ISI John Pancari
Bernstein Research Kevin St. Pierre
William Blair Lawrence T. De Maria
Credit Suisse Moshe Orenbuch
Atlantic Equities Richard Radbourne
Keefe Bruyette & Woods Sanjay Sakhrani
DA Davidson Arren Cyganovich
Oppenheimer Ben Chittenden
Nomura Research Bill Carcache
Drexel Hamilton David Hilder
Deutsche Bank Research David Ho
Guggenheim Securities Eric Wasserstrom
CRT Capital Group Henry J. Coffey Jr.
RBC Capital Markets Jason Arnold
Wells Fargo Securities Matthew H. Burnell
William Blair Robert Napoli

Return to top of page

Primary Input Data

Return to top of page

Derived Input Data

Derived Input


2015 Value

2016 Value

   Equational Form

Net Income NI    NI = \, EBIT\, -\, Interest\, - \,Taxes
Cash Flow From Equity CFE   FCF\,=\,NOPLAT - \Delta \,TE\, + \,Other\,\, Comprehensive\,\, Income
Total Equity TE   TE\,=\, Paid \,\,in\, Equity\,\,Capital\,+\, Accumulated\,\,Retained\,\,Earnings
Return on Equity ROE   ROE \,=\,\frac { NI }{TE }
Net Investment NetInv   NetInv\,=\,\Delta\,\,TE\,=\,{TE}_{1}-{TE}_{0}
Investment Rate IR   IR\,=\,\frac {NetInv}{NI}
Cost of Equity COE   COE\,=\,{R}_{F}\,x \,({R}_{M}-{R}_{F})\, x\, Beta
Enterprise value EVMarket   EV\,=\,Market\,\,Cap\,\,Equity\,+\,Market\,\, Value\,\,Long\,\,Term\,\,Debt\,-\,Cash
EV/EBIT Multiple \frac{EV_{Market}}{EBIT}   EV/EBIT\,=\,\frac { EV}{ EBIT}
Long-Run Growth g = % \Delta GDP   Long-run growth rates of the income variable (g = IR x ROIC and g = % \Delta GDP) are used in the Continuing Value portion of the valuation models.
g = IR x ROIC

Return to top of page

Valuation Model Outcomes

The outcomes presented in this study are the result of original input data, derived data, and synthesized inputs and, depending on the equational form of any particular valuation model, may result in irrelevant or implausible results.  For example, in the event WACC < g, the value of this term, often found in the denominator of an equation’s continuation value term, will be expressly negative and may result in a negative overall valuation for the firm.  In the event of a WACC < g relation, the model form as applied to the subject firm offers an irrelevant outcome.

Valuation Model Type


Equational form

Key Value Driver (NI) KVD (NI) { Value }_{ DCF/KVD }=\sum { \frac { NI_{ t } }{ { \left( 1+COE \right) }^{ t } } +\frac { \frac { { NI }_{ 1 }\left( 1-\frac { g }{ ROE } \right) }{ COE-g } }{ { \left( 1+COE \right) }^{ t } } }
Key Value Driver (CFE) KVD (CFE)
{ Value }_{ DCF/KVD }=\sum { \frac { CFE_{ t } }{ { \left( 1+COE\right) }^{ t } } +\frac { \frac { {NI}_{ 1 }\left( 1-\frac { g }{ ROE } \right) }{COE-g } }{ { \left( 1+COE \right) }^{ t } } }
Cash Flow From Equity CFE  { Value }_{ DCF/CFE }=\sum { \frac {CFE_{ t } }{ { \left( 1+COE \right) }^{ t } } +\frac { \frac { {CFE }_{ 1 }}{ COE-g } }{ { \left( 1+COE \right) }^{ t } } }
Economic Profit ECON π  { Value }_{ { ECON\pi } }= {TE}_{ 0 }+\sum { \frac { {TE}_{ t-1 }({ROE}_{t}-{COE}_{t}) }{ { \left( 1+COE \right) }^{ t } }+ \frac {\frac {{TE}_{0}\ x\ ({ROE}_{1}\ -\ {COE}_{1}) }{COE-g } }{ { \left( 1+COE\right) }^{ t } } }
Forward Market Multiple FMM  { Value }_{ DCF/FMM}=\sum { \frac { CFE_{ t } }{ { \left( 1+WACC \right) }^{ t } } +\frac { { EBIT }_{ 1 }\,{x}\,{FMM}}{ { \left( 1+WACC \right) }^{ t } } }{\,\,\,; \,\,FMM\,=\,\frac{{EV}_{t=0}}{{EBIT}_{t=0}}}

Return to top of page