Goldman Sachs

Navigate firm data through the following pages:

Analyst Listing       Primary Input Data
Derived Input Data       Valuation Model Outcomes

Analyst Listing

The following analysts provide coverage for the subject firm as of May 2016:

Broker Analyst Analyst Email
Credit Suisse Christian Bolu christian.bolu@credit-suisse.com
Buckingham Research James Mitchell jmitchell@buckresearch.com
Nomura Research Steven Chubak Steven.Chubak@nomura.com
Deutsche Bank Research Matthew O’Connor matthew.o-connor@db.com
Oppenheimer Chris Kotowski chris.kotowski@opco.com
Sandler O’Neill & Partners Jeffery J. Harte jharte@sandleroneill.com
Evercore ISI Glenn Schorr glenn.schorr@evercoreisi.com
Guggenheim Securities Eric Wasserstrom eric.wasserstrom@guggenheimpartners.com
RBC Capital Markets Fiona Swaffield fiona.swaffield@rbccm.com
Atlantic Equities Christopher Wheeler c.wheeler@atlantic-equities.com
JMP Securities Devin Ryan dryan@jmpsecurities.com
Wells Fargo Securities Matthew H. Burnell matt.burnell@wellsfargo.com
Keefe Bruyette & Woods Brian Kleinhanzl bkleinhanzl@kbw.com
BMO Capital Markets James Fotheringham james.fotheringham@bmo.com

Return to top of page


Primary Input Data

Return to top of page


Derived Input Data

Derived Input

Label

2015 Value

2016 Value

   Equational Form

Net Income NI    NI = \, EBIT\, -\, Interest\, - \,Taxes
Cash Flow From Equity CFE   FCF\,=\,NOPLAT - \Delta \,TE\, + \,Other\,\, Comprehensive\,\, Income
Total Equity TE   TE\,=\, Paid \,\,in\, Equity\,\,Capital\,+\, Accumulated\,\,Retained\,\,Earnings
Return on Equity ROE   ROE \,=\,\frac { NI }{TE }
Net Investment NetInv   NetInv\,=\,\Delta\,\,TE\,=\,{TE}_{1}-{TE}_{0}
Investment Rate IR   IR\,=\,\frac {NetInv}{NI}
Cost of Equity COE   COE\,=\,{R}_{F}\,x \,({R}_{M}-{R}_{F})\, x\, Beta
Enterprise value EVMarket   EV\,=\,Market\,\,Cap\,\,Equity\,+\,Market\,\, Value\,\,Long\,\,Term\,\,Debt\,-\,Cash
EVBook
EV/EBIT Multiple \frac{EV_{Market}}{EBIT}   EV/EBIT\,=\,\frac { EV}{ EBIT}
Long-Run Growth g = % \Delta GDP   Long-run growth rates of the income variable (g = IR x ROIC and g = % \Delta GDP) are used in the Continuing Value portion of the valuation models.
g = IR x ROIC

Return to top of page


Valuation Model Outcomes

The outcomes presented in this study are the result of original input data, derived data, and synthesized inputs and, depending on the equational form of any particular valuation model, may result in irrelevant or implausible results.  For example, in the event WACC < g, the value of this term, often found in the denominator of an equation’s continuation value term, will be expressly negative and may result in a negative overall valuation for the firm.  In the event of a WACC < g relation, the model form as applied to the subject firm offers an irrelevant outcome.

Valuation Model Type

Label

Equational form

Key Value Driver (NI) KVD (NI) { Value }_{ DCF/KVD }=\sum { \frac { NI_{ t } }{ { \left( 1+COE \right) }^{ t } } +\frac { \frac { { NI }_{ 1 }\left( 1-\frac { g }{ ROE } \right) }{ COE-g } }{ { \left( 1+COE \right) }^{ t } } }
 
Key Value Driver (CFE) KVD (CFE)
{ Value }_{ DCF/KVD }=\sum { \frac { CFE_{ t } }{ { \left( 1+COE\right) }^{ t } } +\frac { \frac { {NI}_{ 1 }\left( 1-\frac { g }{ ROE } \right) }{COE-g } }{ { \left( 1+COE \right) }^{ t } } }
 
Cash Flow From Equity CFE  { Value }_{ DCF/CFE }=\sum { \frac {CFE_{ t } }{ { \left( 1+COE \right) }^{ t } } +\frac { \frac { {CFE }_{ 1 }}{ COE-g } }{ { \left( 1+COE \right) }^{ t } } }
 
Economic Profit ECON π  { Value }_{ { ECON\pi } }= {TE}_{ 0 }+\sum { \frac { {TE}_{ t-1 }({ROE}_{t}-{COE}_{t}) }{ { \left( 1+COE \right) }^{ t } }+ \frac {\frac {{TE}_{0}\ x\ ({ROE}_{1}\ -\ {COE}_{1}) }{COE-g } }{ { \left( 1+COE\right) }^{ t } } }
 
Forward Market Multiple FMM  { Value }_{ DCF/FMM}=\sum { \frac { CFE_{ t } }{ { \left( 1+WACC \right) }^{ t } } +\frac { { EBIT }_{ 1 }\,{x}\,{FMM}}{ { \left( 1+WACC \right) }^{ t } } }{\,\,\,; \,\,FMM\,=\,\frac{{EV}_{t=0}}{{EBIT}_{t=0}}}
 

Return to top of page