US Bancorp

Navigate firm data through the following pages:

Analyst Listing       Primary Input Data
Derived Input Data       Valuation Model Outcomes

Analyst Listing

The following analysts provide coverage for the subject firm as of May 2016:

Broker Analyst Analyst Email
Oppenheimer Ben Chittenden kusdin@jefferies.com
Nomura Research Bill Carcache bill.carcache@nomura.com
Atlantic Equities Christopher Wheeler c.wheeler@atlantic-equities.com
Drexel Hamilton David Hilder dhilder@drexelhamilton.com
Raymond James David Long david.j.long@raymondjames.com
Susquehanna Financial Group Jack Micenko jack.micenko@sig.com
Compass Point Research Jesus Bueno jbueno@compasspointllc.com
Bernstein Research John E. McDonald john.mcdonald@bernstein.com
Evercore ISI John Pancari john.pancari@evercoreisi.com
RBC Capital Markets Jon Arfstrom jon.arfstrom@rbccm.com
Jefferies Kenneth Usdin benjamin.chittenden@opco.com
Piper Jaffray Kevin J. Barker kevin.j.barker@pjc.com
Wells Fargo Securities Matthew H. Burnell matt.burnell@wellsfargo.com
Deutsche Bank Research Matthew O’Connor matthew.o-connor@db.com
Societe Generale Murali Gopal murali.gopal@sgcib.com
FBR Capital Markets & Co Paul J. Miller pmiller@fbr.com
CRT Capital Group Peter J. Winter pwinter@sterneageecrt.com
Sandler O’Neill & Partners R. Scott Siefers ssiefers@sandleroneill.com
Credit Suisse Susan Roth Katzke susan.katzke@credit-suisse.com
Stephens Inc Terry McEvoy terry.mcevoy@stephens.com

Return to top of page


Primary Input Data

Return to top of page


Derived Input Data

Derived Input

Label

2015 Value

2016 Value

   Equational Form

Net Income NI    NI = \, EBIT\, -\, Interest\, - \,Taxes
Cash Flow From Equity CFE   FCF\,=\,NOPLAT - \Delta \,TE\, + \,Other\,\, Comprehensive\,\, Income
Total Equity TE   TE\,=\, Paid \,\,in\, Equity\,\,Capital\,+\, Accumulated\,\,Retained\,\,Earnings
Return on Equity ROE   ROE \,=\,\frac { NI }{TE }
Net Investment NetInv   NetInv\,=\,\Delta\,\,TE\,=\,{TE}_{1}-{TE}_{0}
Investment Rate IR   IR\,=\,\frac {NetInv}{NI}
Cost of Equity COE   COE\,=\,{R}_{F}\,x \,({R}_{M}-{R}_{F})\, x\, Beta
Enterprise value EVMarket   EV\,=\,Market\,\,Cap\,\,Equity\,+\,Market\,\, Value\,\,Long\,\,Term\,\,Debt\,-\,Cash
EVBook
EV/EBIT Multiple \frac{EV_{Market}}{EBIT}   EV/EBIT\,=\,\frac { EV}{ EBIT}
Long-Run Growth g = % \Delta GDP   Long-run growth rates of the income variable (g = IR x ROIC and g = % \Delta GDP) are used in the Continuing Value portion of the valuation models.
g = IR x ROIC

Return to top of page


Valuation Model Outcomes

The outcomes presented in this study are the result of original input data, derived data, and synthesized inputs and, depending on the equational form of any particular valuation model, may result in irrelevant or implausible results.  For example, in the event WACC < g, the value of this term, often found in the denominator of an equation’s continuation value term, will be expressly negative and may result in a negative overall valuation for the firm.  In the event of a WACC < g relation, the model form as applied to the subject firm offers an irrelevant outcome.

Valuation Model Type

Label

Equational form

Key Value Driver (NI) KVD (NI) { Value }_{ DCF/KVD }=\sum { \frac { NI_{ t } }{ { \left( 1+COE \right) }^{ t } } +\frac { \frac { { NI }_{ 1 }\left( 1-\frac { g }{ ROE } \right) }{ COE-g } }{ { \left( 1+COE \right) }^{ t } } }
 
Key Value Driver (CFE) KVD (CFE)
{ Value }_{ DCF/KVD }=\sum { \frac { CFE_{ t } }{ { \left( 1+COE\right) }^{ t } } +\frac { \frac { {NI}_{ 1 }\left( 1-\frac { g }{ ROE } \right) }{COE-g } }{ { \left( 1+COE \right) }^{ t } } }
 
Cash Flow From Equity CFE  { Value }_{ DCF/CFE }=\sum { \frac {CFE_{ t } }{ { \left( 1+COE \right) }^{ t } } +\frac { \frac { {CFE }_{ 1 }}{ COE-g } }{ { \left( 1+COE \right) }^{ t } } }
 
Economic Profit ECON π  { Value }_{ { ECON\pi } }= {TE}_{ 0 }+\sum { \frac { {TE}_{ t-1 }({ROE}_{t}-{COE}_{t}) }{ { \left( 1+COE \right) }^{ t } }+ \frac {\frac {{TE}_{0}\ x\ ({ROE}_{1}\ -\ {COE}_{1}) }{COE-g } }{ { \left( 1+COE\right) }^{ t } } }
 
Forward Market Multiple FMM  { Value }_{ DCF/FMM}=\sum { \frac { CFE_{ t } }{ { \left( 1+WACC \right) }^{ t } } +\frac { { EBIT }_{ 1 }\,{x}\,{FMM}}{ { \left( 1+WACC \right) }^{ t } } }{\,\,\,; \,\,FMM\,=\,\frac{{EV}_{t=0}}{{EBIT}_{t=0}}}
 

Return to top of page